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A B S T R A C T

Over the last two decades, there has been significant advancements in the application of geospatial technologies
in agriculture. Improved resolutions (spectral, spatial and temporal) of remotely sensed images, coupled with
more precise on-the-ground systems (yield monitors, geophysical sensors) have allowed farmers to become more
sensitive about the spatial and temporal variations of crop yields occurring in their fields. Previous research has
extensively looked at spatial variability of crop yields at field scale, but studies designed to predict within-field
spatial patterns of yield over a large number of fields as yet been reported. In this paper, we analyzed 571 fields
with multiple years of yield maps at high spatial resolution to understand and predict within-field spatial pat-
terns across eight states in the Midwest US and over corn, soybean, wheat and cotton fields. We examined the
correlation between yield and 4 covariates, three derived from remote sensing imagery (red band spectral re-
flectance, NDVI and plant surface temperature) and the fourth from yield maps from previous years. The results
showed that for spatial patterns that are stable over time the best predictor of the spatial variability is the
historical yield map (previous years’ yield maps), while for zones within the field that are more sensitive to
weather and thus fluctuate from one year to the next the best predictor of the spatial patterns are the within-
season images. The results of this research help quantify the role of historical yield maps and within-season
remote sensing images to predict spatial patterns. The knowledge of spatial patterns within a field is critical not
only to farmers for potential variable rate applications, but also to select homogenous zones within the field to
run crop models with site-specific input to better understand and predict the impact of weather, soil and
landscape characteristics on spatial and temporal patterns of crop yields to enhance resource use efficiency at
field level.

1. Introduction

In order to apply variable rate input within a field (Schepers et al.,
2004), it is essential to understand the drivers of the spatial distribution
of yield at field scale. A number of studies have investigated the de-
terminants of spatial variability of yield at the level of a single field
(Basso et al., 2011; Koshla et al., 2010) however few studies have at-
tempted to compare predictors of yield spatial patterns over a large
number of fields.

Here we investigate factors that predict within-field yield spatial
variability by dividing fields into stable and unstable portions, based on
the yield temporal variability that each point of the field exhibits over
three or more growing seasons (Basso et al., 2007; Blackmore, 2000). In
the stable portions of a field, the main determinants of spatial dis-
tribution of yield are related to soil properties and landscape position.
However, in areas where yield is unstable from year to year, spatial
distribution of yield is the result of the interaction between the soil
characteristics, position in the landscape and weather (i.e. the

performance of an unstable area of the field will have stronger variation
compared to the rest of the field depending on the year’s weather).

In this study, we examined the correlation between yield and 4
covariates, three were derived from remote sensing imagery (red band
spectral reflectance, NDVI and surface temperature) and the fourth
entailed the use of yield maps from previous years. Each of these cov-
ariates is well-correlated to yield for various reasons. The red band
reflects the amount of light that is not absorbed by the plant in the red
portion of the electromagnetic spectrum and is therefore negatively
correlated with the photosynthesis. In a similar fashion, NDVI (Tucker,
1979) represents the normalized difference between the near infrared
(emitted by leaves) and red (absorbed by leaves) and is positively
correlated to plant photosynthetic activity. Surface temperature is a
proxy for plant transpiration and thus, soil water availability and plant
photosynthetic rate.

We investigated the above-mentioned four covariates using a da-
taset that encompasses fields from eight states of the Midwest of the
United States cultivated with maize (Zea mays L.), wheat (Triticum
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spp.L.), soybean (Glycine max, L.) and cotton (Gossypium spp. L).
We investigated the following research questions: 1) In what part of

the growing season is the correlation between crop growth and plant
spectral reflectance the highest in our 571 fields? We hypothesize that
the best correlation for maize occurs in July, as reported by Johnson
(2014) at the county level, because the processes governing the corre-
lation (photosynthesis level) are the same at the two spatial scales (field
and county); 2) Is the correlation between within-season images and
yield stronger than the correlation between past yield maps and yield?
We hypothesized that historical yield maps exhibit a stronger correla-
tion because they are a proxy for the interaction between soil condi-
tions and past weather along with crop phenology, whereas the in-
dividual within-season images reflect the effects of the weather on
growth only at the time of the image (single crop stage).

To test our hypothesis under the most rigorous conditions, we
compared the variable importance of the historical yield against the
post-facto NDVI images (i.e. the NDVI image that showed the best
correlation with the yield at harvest, although clearly in reality it is not
possible to know beforehand which will be the within-season image
that exhibit the best correlation). We further hypothesized that histor-
ical yield is the best predictor only in the stable zones whereas unstable
zones have by definition poor correlation with the yield of previous
years and therefore they can be better predicted using within season
remotely sensed images.

2. Materials and methods

2.1. Yield data

We collected yield maps from 571 fields from 110 farmers, for a
total number of 2009 fields-year maps. In 27% of the fields we had
more than 4 years of yield maps. The fields were in 8 different states of
the Midwest of the United States, as shown in Map 1. The distribution of
the yields collected for each field and the number of yield maps col-
lected for each state in shown in the Table SI 1.

For each harvest point dataset (i.e. the points recorded by the har-
vester monitoring system relative to one year), the median was used to
define the lower (0.1×median) and higher (3×median) boundaries.
All points below or above the boundaries were handled as outliers and
deleted. Points with the same longitude and latitude were dissolved to
avoid duplicates. The average minimum distance between points was
1.3 m with an average standard deviation between fields of 0.6 m and
within field of 0.4m. We applied to each harvest point dataset a
spherical kriging model with a cell size of 2 by 2m, and a fixed radius
with a distance of 20m and a minimum of 12 points to rasterize the
point dataset.

For every field, we calculated the border of polygon representing
the field, and removed the yield maps that covered less than 75% of the
field. We calculated field boundaries first by merging all the georefer-
enced points into a unique dataset and then by creating a polygon
around the points based on an aggregation distance varying depending
on the number of years of harvest available. The aggregation distance
was set to 15m (3 or more years of yield data), 20m (2 years of yield
data) or 30m (1 year of yield data). For each field, we resampled the
yield maps to have all the same spatial extent to allow a pixel wise
analysis using bilinear interpolation. Additionally, we removed the
years for which more than one yield map for the same field was
available because in those years there were two different crops culti-
vated in different sections of the field. Fig. 1 shows the geographical
distribution of the fields.

2.2. Red band from aerial visual images

Visual imagery for 121 fields was collected in the red, green and
blue bands (RGB) by Airscout, a commercial airborne image company
operating in the Midwest US. Of the total number of fields, images were

collected of 93 fields for one year, 25 fields for two years, and one field
for 3 years. We only considered the red band, as this is a proxy of the
light absorbed by plants. Images were taken between the 4th of April
and the 10th of October (Fig. SI 2a) in 2014 (3 fields), 2015 (39 fields)
and 2016 (102 fields). The flights hours were uniformly distributed
between 9 a.m. and 6 p.m. (Fig. SI 2b). The resolution of the red band
images was on average 0.30m (sd 0.05), the resolution varied de-
pending on the flying height of the airplane (Fig. SI 2c). In the few cases
where multiple pictures of a field were taken at interval lower than one
hour, raster images were averaged, under the assumption that either
multiple pictures were taken by mistake or that each picture represents
only a portion of the field. Raster images were resampled (using a bi-
linear interpolation method) and projected to match the resolution and
projection of the yield maps.

2.3. Airborne plant temperature and visual images

Plant surface temperature and visual (RGB) images were taken si-
multaneously from 130 fields, in 9 fields the temperature image was
available whereas the red band image was not available. The resolution
of the temperature images was on average 2.2 m (sd 0.2, Fig. SI 3c). We
resampled the temperature images to match the yield maps resolution,
extent, and projection. This operation was necessary to perform a pixel-
wise analysis of the correlation between the temperature image and
yield image. The resampling method adopted was a bilinear inter-
polation method. As for the images of the red band reflectance, in the
few cases where multiple pictures of the field were taken at a time
distance lower than one hour the raster images were averaged, under
the assumption that either multiple pictures were taken by mistake or
that each picture represents only a portion of the field. We removed
pixels indicating temperature values higher than 50 °C as they may
indicate a measurement error.

2.4. Landsat 8 derived NDVI images

We downloaded all the images available for each field from April 1,
2014–November 1, 2016 using the python package Landsat-util. We
screened all the images to mark as not available (NA) those pixels
whose quality was affected by clouds, points that contained designated
fills and dropped frames using the Landsat 8 Pre-Collection Quality
Assessment. We then removed the images for which more than 25% of
pixels in the field were marked as not available. We calculated the NDVI
for each Landsat scene using the following formula:

=
−

+

NDVI NIR RED
NIR RED

We report the distribution of the number of images available in the
period July-August in the Fig. SI 4, the median of the distribution is 3.
To measure the correlation between yield maps and NDVI images, we
resampled the yield maps to match the resolution of the Landsat images
using the bilinear interpolation method.

2.5. Historical yield

For the fields for which we had yield maps from at least four years,
we calculated a historical yield map using the following algorithm: first,
we normalized each yield map (i.e. centered and scaled to have
mean=0 and sd= 1); second, for each year we calculated the pixel-
wise mean of the previous years’ normalized yield maps. We calculated
the historical yield map only for those years where at least three pre-
vious yield maps were available. For example, if there were yield maps
for 2012, 2013, 2014 and 2015 for a field, the historical map was
calculated only for 2015, whereas if there were yield maps only for
2013, 2014, and 2015, no historical map was calculated for that field.
Conversely, if yield maps for 2012–2016 were available, we calculated
the historical map for both 2015 and 2016. We used only maps from the
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previous years to simulate the real conditions of the farmer who ob-
viously do not have the yield maps of future years. We calculated at
least one historical map for 265 fields.

2.6. Yield stability maps

For the 339 fields for which at least three years of yield maps were
available, we calculated a stability map using the following algorithm:
first, we normalized each yield map (i.e. centered and scaled to
mean=0 and sd= 1); second, we calculated for every pixel the stan-
dard deviation of all yield maps recorded; third, we set as unstable the
pixels that had standard deviation larger than the 80th percentile of the
map of the standard deviation of the yield. Therefore, in each field 20%
of the pixels were categorized as unstable and 80% were categorized as
stable.

2.7. Statistical method

For our first hypothesis (correlation of yield and within season
images across the season) the response variable representing the subject
of the analysis was the correlation between yield and a set of covariates
(NDVI, temperature, red band, historical yield map).

We calculated the correlation between the yield and each of the
covariates using the Spearman rank correlation coefficient at within
field level. The Spearman rank correlation is equal to the Pearson
correlation coefficient applied to the ranks of the variables:

=r cov x y
sd x sd y

( , )
( )* ( )

Where cov(x,y), where cov indicate the covariance between the ranks of
yield and the second variable and sd of their ranks. The Spearman rank
correlation was used instead Pearson correlation as within-field yield
data are negatively skewed and broader than a normal distribution
(Joernsgaard and Halmoe, 2003).

We then transformed the correlation coefficient (r) using the
Fisher’s z transformation in order to transform the Pearson correlation
coefficient into a new variable whose domain is the set of real numbers
(i.e. is no longer bounded between −1 and 1, like the correlation
coefficient but between −∞ and +∞).

The Fisher’s Z transformation function is the following:

= + − −z ln r ln r0.5* (1 ) (1 )

We tested the null hypothesis that there was no significant differ-
ence between the correlation covariate-yield for images taken at dif-
ferent time of the growing season (May–October). We created for each
of the remote sensing predictor (NDVI, red band, and surface tem-
perature) and crop a dataset that included the available images for that
predictor (resampled to match the yield) and the yield measured at the
end of the season. We tested the null hypothesis (the correlation be-
tween yield and the covariate does not change during the growing
season) using a linear mixed model, with nested random effects.
Random effects were the state, the farmer and the field identifier. The
model equation that was fit to each dataset was the following:

= + + + + +Fz r α β DOY ε ε ε ε( ) * cat state farmer field residuals

Where the Fz r( ) is the spearman correlation coefficient transformed
using Fisher’s transformation, DOYcat is the day of the year binned in
groups of 15 days, and β is the vector of estimated coefficients

Fig. 1. Geographical distribution of the fields in the considered in the present study. The color of the circles reflects the number of fields in the area. The stars within each state map
indicate the location of individual fields.
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associated to each DOYcat. The terms εstate, εfarmer, εfield where are
random effect of the intercept associated respectively to the state, the
farmer and field, whereas εresiduals indicate the residuals.

To investigate whether historical yield is a better predictor of spatial
yield distribution than remote sensing images, we compared two simple
models: in the first model the explanatory variable was the historical
yield whereas in the second model the explanatory variable was the
best post-facto NDVI image. In each model, we also included two
random effects, one random effect of the intercept and one random
effect of the slope. In both cases the levels of the random effect were
accounted for each field-year combination. We report model formulas
in Table 1.

To select the best model, we used the Second-Order Information
Criterion (AICc, Sugiura, 1978), where the penalty term was adjusted to
account for pseudo-replication as suggested in Burnham (2002). We
used as sample size to estimate the penalization the number fields-year
in the dataset, we calculated the AICc using the following formula:

= − × + × ×

− −

AICc logLikelihood θ K n
n k

2 ( ˆ) 2
1

To compare the use of within-season images with the historical
yield, we chose to focus solely on the NDVI index rather than surface
temperature images and red band images, because as observed in Fig. 1
the NDVI images had a higher correlation than the surface temperature
images and the red band images. We compared the two models sepa-
rately first on each crop for the whole field and then for each crop first
only in the stable portions of the field and then only in the unstable
portion of the fields.

1) We identified for each field-year the NDVI image that had the best
spearman correlation with the yield measured at the end of the
season. As noted in the introduction this is a post-facto analysis,
however we opted to choose the image with the best correlation in
order to verify our hypothesis under more rigorous conditions.

2) We resampled each yield image and previous harvest image to
match the resolution and spatial extent of the NDVI images.

3) We created a dataset composed of all the pixels in the dataset with
the following columns: final yield (response variable), NDVI (ex-
planatory variable), historical yield average (explanatory variable),
crop and field identifier.

4) We removed from the dataset the rows (i.e. the pixels) where at least
one variable was missing. This step was necessary to ensure that
model likelihood was calculated on the same dataset for each model.

5) We split the dataset by crop first (Table 1a) and by crop and then by
crop and stability (Table 1b) and fit the two models to each subset
and selected the best model based on the AICc.

To better visualize the performance of the different predictors, we
calculated for each remote-sensing predictor the average spearman
correlation between yield and the best post-facto image separately for
the stable and unstable portions of the field (Fig. 3).

The statistics were calculated using R v 3.2.3 and the R libraries
raster (Hijmans, 2016) for raster manipulation, lme4 (Bates et al., 2015)
to fit mixed models, snow and snowfall (Tierney et al., 2016) for parallel
computing.

3. Results

3.1. Research question 1

For Maize, the best correlation between NDVI maps derived from
Landsat images and yield maps occurred between the last week of July
and the first week of August (Figs. 2 and S5, p < 0.05). For wheat,
soybean and cotton, we did not identify a single 15-day interval that
exhibited the best correlation between NDVI and yield across all the
fields analyzed (Figs. 2 and S5). The correlation between yield and the

other remote sensing variables (temperature, red band) did not show a
hump shape with a clear period having a stronger correlation than the
others (Figs. 2 and S5).

3.2. Research question 2

We found that when we considered the whole field (i.e. both stable
plus unstable portions) the model including the historical yield was the
best predictor according to the AICc criterion for maize, wheat and
cotton, but not for soybean (Table 1).

When the analysis was limited to the stable zones we found that the
model including the average correlation between historical yield
average and yield was better than the average correlation observed
between the “best” image and the yield for all the type of remote sen-
sing images analyzed here (Fig. 3). The model selection procedure
confirmed it (Table 1b) by showing that the best model to predict the
yield in the stable portions of the fields was the historical yield for all
the crops.

In the unstable portions of the fields the historical yield was a poor
predictor of the yield spatial distribution, whereas the images derived
from remote sensing didn’t show a difference between their correlation
with yield in stable and unstable zones and NDVI exhibited the best
correlation with yield in the unstable zones. The model selection pro-
cedure confirmed the better performance of NDVI images in unstable
zones for all crops except wheat.

4. Discussion

4.1. Temporal variability and signs of the correlation coefficients

The NDVI was positively correlated with yield as it is an indicator of
canopy size and thus photosynthetic activity. The red band was nega-
tively correlated with yield. Higher reflectance in the red band indicates
presences of other compounds such as carotenoid, xanthophyll that
musk green chlorophyll molecules, lowering plant photosynthesis.
Temperature, as expected, was also negatively correlated with the yield
because it is an indicator of plant being hot and not being able to
transpire at the evaporative demand rate. A plant that is photo-
synthetically active will have open stomata resulting in higher tran-
spiration when water is available which in turn, reduces canopy surface
temperature. In the early stages of plant development other processes
that are independent from the plant growth and thus from the yield are
strongly influencing the surface temperature. For example, in the early
phenological stages, corresponding to relatively little ground cover, the
surface temperature is mostly controlled by physical processes occur-
ring in the soil like fluxes of latent heat flux due to water evaporation
(Fengshan et al., 2017). Surface temperature correlated negatively with
yield in the July-August period, confirming at subfield level the findings
for maize by Johnson (2014) at the county level. Similarly, plants with
lower reflectance in the red band are characterized by lower amounts of
orange-red pigments (carotenoid, xanthophyll) and healthier condi-
tions. Our findings confirm both these theories, however the correlation
of both the red band and temperature with yield, even though existed,
was weaker than the correlation obtained using the NDVI index (Fig. 2).

We showed that images of maize between the end of July and the
beginning of August exhibit the strongest correlation between yield and
the NDVI index, such consistency across eight different states is sur-
prising considering the differences that exist regarding the sowing dates
and the climates. With regard to corn and soybean, our findings mea-
sured at the sub-field level agree with the data measured at the county
level by Johnson, (2014). This suggests that this correlation holds at
multiple scales (county level and within field).

4.2. Management strategies for the stable and unstable zones

Using model selection and averaged correlation coefficients, we
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observed that the most important predictor of yield distribution in
stable zones is the historical yield, whereas in unstable zones yield
spatial distribution are more correlated to within-season images.

This finding implies that in zones that are stable, the spatial dis-
tribution of yield is less dependent on the year’s weather. Despite fa-
vorable or unfavorable weather that they may receive a point that has
on average high yields and that is stable will always be high compared
to the rest of the field. We hypothesize that the relative yield in unstable
zones depends on weather conditions and therefore vary from year to
year. For example, it is possible that unstable zones are concave areas
that are waterlogged in wet years and relatively more humid in dry
years, resulting in high oscillation of the yield.

This has important management implications. In fact, the stable
zones may be managed using a zone-specific management strategy —

selected before the season, often called strategic (Basso et al., 2011) —
obtained from running crop models with site-specific input and cali-
brated over a long-time weather and yield records. Once the different
management scenarios and the associated uncertainty are available, the
farmer implements the most sustainable management practice from the
economic and environmental standpoint (tradeoff between net revenue
and environmental outcomes like nitrate leaching) (Basso et al., 2011).
For instance, if a validated crop model indicates that in 24 out of 30
years of observed weather a fertilization rate of 150 kg N/ha gives the
same yield of 200 kg N/ha, the farmers may choose to apply 150 kg N/
ha knowing that there is a 20% possibility (6 years out of 30) that
applying a higher fertilization rate would have resulted in a higher
yield. In unstable zones, the adoption of a zone-specific management
strategy before the season may not be sufficient to match supply and

Fig. 2. Trend over time of the correlation coefficients (r)
between yield and airborne-derived covariates collected with
from an airplane (red band and temperature) and satellite
images (NDVI), divided by crops. The time has been grouped
in periods of 15 days, the label “MAX” on top of the curve
indicate the time of the year when the spatial correlation
between yield and the covariate of interest was stronger and
it was calculated as the absolute value of r. The stars indicate
the dates that were significantly different from the date that
exhibits the maximum correlation. The significance of the
difference between the maximum date and the other was
calculated using a mixed model, where the time period with
maximum correlation was set as the intercept. The estimates
of the coefficients of the models employed is reported in Fig.
SI 4. The error bars represent the standard error of the mean.
(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this ar-
ticle.)

Fig. 3. Average correlation between covariates and yield. The red bar represents the correlation coefficient calculated only on the portion of the field defined as unstable and the green
bar only on the portion of the field defined as stable. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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demand, and within-season adjustment to the management strategy
may be necessary depending on the interaction between the observed
weather and crop response, since the response in unstable zones is
strictly dependent of weather. This approach is often call tactical (Basso
et al., 2011) For example if the weather forecasts are favorable the
farmer chooses the before-season management scenarios obtained from
running the models under favorable scenarios, whereas if the year is
characterized by unfavorable conditions, then the best management
strategies will be chosen from years that better reflect these conditions.
Using this approach the use of remote sensing in the management of
unstable zones starts when the first within-season images are available
and can be used to match up supply and demand considering not just
nitrogen availability, but also the amount of soil water available to
plants to efficiently use the available nitrogen. (Basso et al., 2011,
2007; Dumont et al., 2015).

A challenge in the management of unstable zones is that the pre-
dictors of spatial variability may be available only when a limited set of
options for management are available to the farmer. However, more
farmers are becoming equipped with high-wheels fertilizer spreader to
apply N fertilizer later in the season in amounts that would vary over
space and depending on the weather received that season. Another
important aspect to consider, though, is still the knowledge of yield
before the end of the season to better refine sale and storage of the
products to be harvested.

4.3. Historical yield was the best predictor for the spatial distribution of the
yield

When we considered the field as a whole (i.e. without partitioning
between stable and unstable portions), the model having as predictor
the yield of the previous years were better than models having as
predictor the best image in the season, for all the crops but soybean.
However, it is important to consider that we gave to the NDVI images
the advantage of choosing among the images in the season the image
that showed the best correlation with the yield, a situation that clearly
is not happening in reality where NDVI images are usually used to
predict future yields.

One possible explanation for the lower performance of individual
images compared to the historical yield is that they are connected only
to one phase of the plants. The historical yield will represent a spatial
index that is a combination of all the processes that regulate the yield,
in corn for example kernel development and filling. On the contrary,
airborne images will only capture one individual stage of the devel-
opment at a time, therefore while individual images may be of little
help if used to predict the yield spatial distribution they could be of
great if used to calibrate crop models coupled to land surface models.
For example by coupling land surface models and crop models it would
be possible to obtain surface heat as a model output and use it calibrate
the model within the growing season and simulate the effect of the
different management options. However although several attempts
have been done to couple crop phenology and land surface models their
use is still mostly limited to simulate the effect of changes in crop
management on land surface processes (e.g. Sacks and Kucharik, 2011;
Song et al., 2013) whereas the use of coupled models to improve the
accuracy of crop models need further research.

5. Conclusion

This study is the first research to report a Big-Data approach (571
fields for multiple years) on the within field correlation between dif-
ferent covariates (Landsat-derived NDVI, red band at 0.3 m resolution

and temperature at 2m resolution). Our findings have two important
management implications: first it validates the management by yield
approach, where the management follows the principle that the inputs
should reflect to the potential of the areas. This approach may prove
particularly valid for the stable zones if coupled to modeled yield pre-
dictions based on weather forecast. Secondly that the use of satellite
images may be a valuable tool to inform within-season decisions for the
unstable zones, like the late application of N using new high-wheels
fertilizer spreaders.
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